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Our principal objective continues to be the development of robust computational approaches for

estimating the spatial organization of a scene using time varying properties of image sequences.
Three closely related problems are being pursued:

a. Objectives.

o Active tracking of surface boundaries.

Much attention is currently being paid to problems involving active vision. An active vision
system is able to at least partially control the manner in which perceptual information is
acquired. Within the context of motion, several authors have argued that active tracking of
moving objects or surface points provides additional constraints of use in solving structure-
from-motion problems. We have shown that this is not in fact true. Active tracking can,
however, significantly simplify some of the computations involved in analyzing visual motion.

e Moving object detection.

The detection of moving objects is an important task for many robotics applications. With
previous AFOSR support, we developed a series of algorithms for moving object detection in
a variety of special situations. Under this contract, we have placed these methods under a
coherent theoretical framework. As a result, it is now much easier to determine the difficulty
of detection for a given situation and to apply the most appropriate detection method.

e Motion-based segmentation.

We have done extensive research on methods for incorporating motion into the segmentation
process. Motion-based segmentation is important because it provides more information than

methods using only static cues. Two significant accomplishments have been achieved under
this contract:

— Integrating motion and contrast for segmentation.

Motion-based edge detection is sensitive only to actual surface boundaries. As a result,
ambiguity is reduced over methods based only on image contrast. Traditional brightness-
based edge detection is far more precise at localizing edges, however. We have shown
how edge detectors can be built that naturally incorporate the best aspects of brightness-
based and motion-based edge detection.

— Occlusion-sensitive matching.

Our most important result under the current contract deals with improvements in ob-
ject recognition that are possible using the results of our motion-based segmentation
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technique. Recognition in the presence of occlusion is difficult because it is hard to tell
what features are part of the object being analyzed and what features are actually part
of other objects partially occluding the object of interest. Our approach uses motion to
differentiate between occluding and occluded surfaces, and then uses this information to
remove irrelevant features from the classification process.

b. Status of research effort.

Active tracking of surface boundaries.

Others have argued that optical tracking of an environmental surface point significantly decreases
the intrinsic complexity of various structure-from-motion problems. This is not in fact true. Track-
ing provides neither additional constraints nor other sorts of new information. This is easily seen
by recognizing that all of the information in the tracking image is available in an image of the same
scene without tracking. Tracking is accomplished by generating a rotation of the eye/camera sys-
tem based on estimates of image drift such as optical flow at the image center. Once this rotational
velocity is determined, a non-tracking image sequence can trivially be converted into the equivalent
tracking sequence using standard techniques.

Active tracking can lead to important efficiencies in the implementation of certain structure-from-
motion algorithms. We have developed two such methods:

o Identification of occluding surface.

When a boundary element is visually tracked, the region to the side of the boundary corre-
sponding to the occluding surface will have near-zero image flow. The region to the side of the

boundary corresponding to the occluded surface will in general be assnciated with significant
visual motion.

o Determination of direction of observer motion.

When a boundary element is visually tracked, optical flow due to the more distant surface
indicates the direction of observer motion. The flow vectors point in the direction of the
image location corresponding to the line of sight coincident with the direction of translational
motion. Multiple fixations over the field of view can be used to solve for the actual direction
of translation.

The first of these techniques requires only the detection of regions with significant image motion, a
far easier tasks than the comparisons required by previously known methods. The second technique
eliminates difficulties due to camera rotation that plague most other solutions to this problem
Additional discussion is presented in [5].




Moving object detection.

The reliable detection of moving objects is essential for many robotics applications. If the camera is
stationary and illumination constant. this can be done by simple techniques which compare succes-
sive image frames. looking for significant differences. If the camera is moving, however, the problem
is considerably more difficult. For a moving camera, both moving objects and stationary portions of
the scene may be changing position with respect to the camera and thus generating visual motion
in the imagery. A moving camera leads to difficulties because of the need to determine objects
moving with respect to the environment, rather than the much easier problem of finding objects
moving with respect to the camera. General solutions based only on vision are computationally
complex and likely to be numerically unstable. If partial information is available about camera
motion and/or scene structure, however. robust motion detection methods are possible.

We have shown that possible approaches to this problem fall into three categories:

e Violations of motion epipolar constraint.

Translational motion produces a flow field radially expanding from a “focus of expansion™
(FOE). Any flow vectors violating this constraint are due to moving objects.

e Comparison of optical flow and other depth information.

While patterns of optical do not uniquely specify depth, they do constrain the possible values.
Motion-based constraints on possible depth can be combined with static constraints obtained
from cues such as stereo. Violations of the combined constraints indicate that moving objects
are present.

o Violations of rigid object constraint.

Only certain patterns of optical flow can correspond the the imagery produced by a moving,
rigid, three-dimensional object. While we have not yet researched this approach extensively,
there is reason to believe that it may be possible to determine whether or not this rigidity
constraint is actually satisfied. If so, distin: i, non-rigid motion corresponds to moving
objects.

Understanding the theoretical underpinnings of moving object detection has several advantages.
Perhaps most importantly, it is now possible to determine under what situations a particular
approach will work without having to examine the details of a specific algorithm. Likewise, the
strengths and weaknesses of whole classes of algorithms can be investigated at one time. Finally,
we expect that better performing algorithms will arise from a more complete understanding of the
basic constraints involved in the problem. More information can be found in [1].

Motion-based segmentation.

Edge detection algorithms based on visual motion perform significantly differently than those based
on brightness. Previous attempts to combine motion and contrast information in edge detection
have not recognized these differences. Static cues such as contrast edges give good spatial localiza-
tion. but are subject to highly ambiguous interpretations. Visual motion is a robust indicator of
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surface boundaries, but does not vield precise information on the location of the boundary. The
approach described in (4] accurately locates edges due to surface boundaries, without generating
many “false” edges. Furthermore. the combined method adds minimal computational complexity
to the edge detection process.

Our most important result under the current contract deal with the problem of recognizing partially
occluded objects. Most existing matching algorithms that are tolerant of occlusion look for a partial
correspondence between model and image features. If a partial match is found. unmatched model
components are assumed to be hidden by an occlusion. This approach leads to difficulties because of
the chances for partial matches occurring coincidentally. In our method, motion-based information
about occlusion boundaries is used to explicitly identify model features that will not be visible in
the image. Most of the remaining model features should be findable if the match is in fact correct.
Occluded model features are determined based directly on image properties at boundaries. rather
than just on the absence of an image feature at some expected location. The result is a significant
decrease in ambiguity. Details are found in {4).
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Detecting Moving Objects

William B. Thompson
Ting-Chuen Pong

Computer Science Department
University of Minnesota
Minneapolis. MN 33433

Submitted to the International Journal of Computer Vision.
Abstract

The detection of moving objects is important in many tasks. This paper examines
moving object detection based primarily on optical flow. We conclude that in realistic
situations. detection using visual information alone is quite difficult, particularly when
the camera may also moving. The availability of additional information about camera
motion and/or scene structure greatly simplifies the problem. Two general classes of
techniques are examined. The first is based around the motion epipolar constraint -
translational motion produces a flow field radially expanding from a “focus of expansion”
(FOE). The second class of methods is based on comparing observed optical flow with
other information about depth. Examples of several of these techniques are presented.

1 Introduction.

One important function of a vision system is to recognize the presence of moving objects in a scene.
If the camera is stationary and illumination constant, this can be done by simple techniques which
compare successive image frames, looking for significant differences. If the camera is moving, the
problem is considerably more complex. For the purposes of this discussion, moving objects are
taken to be any objects moving with respect to the stationary portions of the scene, which we refer
to as the environment. For a moving camera, both moving objects and stationary portions of the
scene may be changing position with respect to the camera and thus generating visual motion in
the imagery. A moving camera leads to difficulties because of the need to determine objects moving
with respect to the environment, rather than the much easier problem of finding objects moving

This work was supported by AFOSR contract AFOSR-87-0168 and NSF Grants DCR-8500899 and IRI-8722576.

A preliminary version of this paper appeated in The Proceedings of the First International Conference on Com-
puter Vision, London, June 1987.
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with respect to the camera. In this paper. we deal with the problem of detecting moving objects
from a moving camera based on optical flow.

Figure 1: Is The Central Region a Moving Object?

The visual detection of moving objects is a surprisingly difficult task. A simple example
illustrates just how serious the problem can be. Consider the optical flow field shown in figure 1
which appears to show a small, square region in the center of the image moving to the right and
surrounded by an apparently stationary background. Such a flow field can arise from several equally
plausible situations: 1) The camera is stationary with respect to the environment, and the central
region corresponds to an object moving to the right. 2) The camera is moving to the left with
respect to the environment, most of the environment is sufficiently distant so that the generated
optical flow is effectively zero, while the central region corresponds to a surface near to the camera
but stationary with respect to the environment. 3) The camera and object are moving with respect
to both the environment and each other, though the environment is sufficiently distant so that
there is no perceived optical flow. It is not possible to tell whether or not this seemingly simple
pattern corresponds to a moving object!!

Figure 1 provides one exampie of why a general and reliable solution to the problem of moving
object detection based only on optical flow is not feasible. Robust solutions require that additional
information about camera motion and/or scene structure be available. In this paper, we examine a
variety of types of information that might be available. Each information source pla.cécbnstraints
on the optical flow fields that can be generated by a camera moving through an otherwise static
environment. Violations of these constraints are thus necessarily due to moving objects.

!The flow pattern in figure 1 provides little information about actual camera motion. Apparently stationary image
regions can be due to the viewing of distant surfaces and/or rotational motion that tracks a surface point, keeping
it at a fixed point in the field of view. Even with significant non-zero flow existing over the whole of the image,
ambiguities exist between flow patterns due to translational motion and due to rotational motion {1].




2 Background.

An extensive literature has developed on computational approaches to the analysis of visual motion
(e.g.. see 2"). The majority of this work deals with what Ullman (3] has called the structure-
‘rom-motion and motion-from-structure problems. Visual motion is used to determine the three-
dimensional position of surface points under view and/or the parameters of motion relating camera
and object. Almost without exception. papers describing structure-from-motion and motion-from-
structure algorithms deal only with a single, rigid object in the field of view. If the problem of
separately moving objects is mentioned at all. it is in a comment that the image must be segmented
:ato separately moving objects before the method being described is applied.

Some work has been done on the segmentation of images based on visual motion. The easiest
form of this problem occurs with a camera known to be stationary. In such circumstances. object
motion leads to significant temporal differences in an image sequence. Such differences correspond
to moving objects. and furthermore can be used to estimate the boundaries of the objects (e.g.,
‘4. 5]). More classical edge-detection techniques can also be applied to time-varying imagery (6. 7,
3.9, 10. 11]. Such approaches work for both moving and stationary cameras. When the camera is
moving, however, sharp spatial changes in visual motion can correspond to either the boundaries
of moving objects or to depth discontinuities between two rigidly attached surfaces. As a result,
motion-based edge detection is not sufficient to detect moving objects.

Jain is one of the few researchers to deal directly with the problem of detecting moving objects
using a moving camera (8]. His approach exploits the motion epipolar constraint which says that
for translational camera motion with respect to a static environment, optical flow will expand
radially from a focus of expansion corresponding to the direction of translation. For translational
motion, any flow values violating the epipolar constraint must be due to moving objects in the
scene. Unfortunately, this approach requires knowledge of the direction of translation and does not
work if the motion has a rotational component.

3 Possible approaches.

At least three general approaches to moving object detection are possible. Each exploits a particular
constraint that must hold if a camera is moving through an otherwise static environment. Detecting
moving objects becomes equivalent to a search for violated constraints.

e Motion epipolar constraint.

Translational camera motion produces a distinctive optical low pattern. Flow vectors appear
to radiate out from a “focus of expansion” (FOE) corresponding to the line of sight coincident
with the direction of motion. This has the effect of constraining the orientation of flow vectors.
Visual motion which violates this orientational constraint must be due to moving objects.
Under some circumstances, the motion epipolar constraint may still be used when camera




rotation is added to the translational movement.

o Depth/flow constraint.

The optical flow generated by a surface point is a function of the relative motion between
camera and surface and of the range to the surface. If range values are available. then
inconsistencies between optical flow. range, and observer motion signal moving ob jects.

e Rigidity constraint.

A scene containing moving objects can be thought of as undergoing non-rigid motion with
respect to the camera. Structure-from-motion techniques which are sensitive to the presence
of non-rigid motion can thus be used to detect moving objects.

This paper will concentrate on epipolar and depth/flow methods. Though potentially effec-
tive. methods based directly on the rigidity constraint require longer frame sequences. temporal
derivatives of optical flow. and/or a wide field of view to enhance perspective effects.

4 Presumptions.

Many theoretically plausible techniques for analyzing visual motion are ineffective in practice.
Typically, the assumptions on which these techniques are either explicitly or implicitly founded do
not accurately represent real problems. For this work, we start with the presumption that motion
detection aligorithms should be designed with the following properties in mind:

o The field of view may be relatively narrow.

Motion detection should not depend on the use of wide angle imaging systems. Such systems
may not be available in a particular situation, and if used may increase the difficulty or
recognizing small moving objects. As a result, detection algorithms should not depend on
subtle properties of perspective.

o The image of moving objects may be small with respect to the field of view.

This is clearly desirable for reliability. Moving objects may be far away and subtended by
relatively small visual angles. We need methods capable of identifying single image points, or
at least small collections of points, as corresponding to moving objects. Detection algorithms
thus cannot depend on variations in flow over a potentially moving object.

o Estimated optical flow fields will be noisy.

No method is capable of estimating optical flow with arbitrary accuracy. Motion detection
based on optical flow must be tolerant of noisy input.




5 The Optical Flow Equation.

The basic mathematics governing the optical flow generated by a moving camera is well known.
Qur notation is similar to 12}, using a coordinate system fixed to the camera (e.g., the world can be
thought of as moving by a stationary camera). Optical flow values are a function of image location.
the relative motion between the camera and the surface point corresponding to the image location.
and the distance from the camera to the corresponding surface point:

F.(p)

F(p; = D) +F.(p) (1)
F, = (=U+zW , =V 4 yit) (2)
F, = (Azy-B(z*+1)+Cy , A(y* +1)- Bzy-Cz)) (3)

where F is the optical flow at image location p = (z.y), z and y are normalized by the focal length.
r(p) is the range from the camera to the surface point imaged at p, T = (U,V.W)T specifies the
translational velocity of the camera, and w = (A, B,C)T specifies camera rotation.

Most work on the analysis of optical flow has dealt with a camera moving through an otherwise
static environment or, equivalently, a single rigid object moving in front of a fixed camera. In such
cases, single values of T and w govern the flow over the whole image. If moving objects are present,
then the relative motion between camera and environment will be different than the relative motion
between camera and moving object. Notationally, we will specify the camera motion with respect
to the environment by T("*) and w(*™”). The parameters specifying the relative motion between
the camera and an arbitrary scene point p will be indicated by T{P) and w(P). p lies on a moving
object if T(P) % T(e™) and/or w(P) # wlenv),

6 Detection based on Epipolar Constraint.

If complete information about instantaneous camera motion is available, then T{*"*) and w(*™) are
known. If the camera is translating but not rotating with respect to the background, w(™) = 0,
F. = 0, and all low vectors due to the moving image of the background will radiate away from a
focus of expansion (FOE). From equations 1 and 2, it is easy to see that the image plane location

Qy ’oﬂ W [} W

While the location of the FOE depends only on the direction of translation and not on the speed, it
is important for detectability that the speed be sufficient to generate measurable optical flow. The
FOE is not restricted to lie within the visible portion of the image (and in fact may be a focus of
contraction). An FOE at oo corresponds to pure lateral motion, which generates a parallel optical
flow pattern.




6.1 Direct use of motion epipolar constraint.

For pure translational motion. the direction of motion specifies the direction of optical flow associ-
ated with any surface point stationary with respect to the environment:

V-ow
=tan~t — Y 5
6f0e = tan™" F— i (3)

where 8¢,, is the expected flow orientation at the point (z.y). predicted using the motion epipolar
constraint. Note that this equation is still well defined when ¥ = 0. corresponding to a focus
of expansion at =c in image coordinates. Any flow values with a significantly different direction
correspond to moving objects [3]. (The converse is not necessarily true. It is possible that moving
objects coincidentally generate flow values compatible with this constraint.) This approach requires
the estimation of only the direction of flow, not either the magnitude or spatial variation of flow.

Camera rotation introduces considerable complexity. Knowledge of camera motion no longer
constrains the direction of background flow. Nevertheless, at a given point p, flow is constrainted to
a one-dimensional family of possible vector values. The family is given by (1-3) where r ranges over
all positive values. The analysis can be simplified because of the linear nature of (1). F, depends
only on the parameters of rotation and not on any shape property of the environment. Because
the value of F, at a particular point p does not depend on r(p), it can be predicted knowing only
w. At every point within the field of view, this value can be subtracted from the observed optical
flow field, leaving a transiational flow field:

Ftrcn.l =F- F. (6)

This field behaves just as if no rotation was occurring, and thus moving objects can be located using
the FOE technique described above. For the remainder of this paper, when rotation is present, we
will take the term FOE to refer to the focus of expansion of this translational field.

In principle, even if camera motion is not known T{**¥) and w(*™¥) may be estimated from
the imagery (e.g., [12]), subject to a positive, multiplicative scale factor for T(**). Two serious
problems exist, however. Narrow angles of view make estimation of camera motion difficult, as
significantly different parameters of motion and surface shape can yield nearly identical optical
flow patters {1]. In addition, techniques such as {12] uses a giobal minimization approach which will
not perform well if moving objects make up a substantial portion of the field of view. A clustering
approach (e.g., [13]) can be made tolerant of the moving objects, though great difficulty can be
expected dealing with a five dimensional cluster space.

6.2 Indirect use of motion epipolar constraint.

The motion epipolar constraint has an important implication for motion analysis methods that
operate only over small image neighborhoods. Away from the FOE, F(p) and F,(p) vary slowly
with p (equations 2 and 3). Over a small neighborhood, both F(p) and F.(p) are essentially




constant. As a result, over a small neighborhood. the component of flow due to rotational motion is
essentially constant. while the translational flow. F,,4n,, varies only by a scalar multiple dependent
on depth. That is. over the neighborhood Fr4ns is essentially constant in direction. We can use this
result to simplifv problems arising from rotational camera motion. In one technique. we explicitly
compensate for rotation. In a second technique, active tracking of potentially moving objects leads
to a particularly simple computational scheme.

6.2.1 Known rotation.

Often. information about camera rotation is available. even when the direction of translation is
aot known. Non-.isual information about camera motion often comes from inertial sources. Such
sources are much more accurate in determining rotation than translation. Rotation involves a
continuous acceleration which is easily measured. The determination of translation requires the
integration of accelerations. along with a starting boundary value. Errors in estimated translation
values rapidly accumulate. A simple technique allows the detection of moving objects when only
camera rotation is known.

If all motion parameters are known, knowledge of camera rotation makes it possible to compute
the translational flow field. Ftrqns. Knowledge of translation can then used to locate the FOE and
thus constraint the direction of flow vectors associated with the environment. If only rotation is
known., it is still possible to determine the translational flow field, but not the FOE. Visual methods
an be applied to the translational flow field to estimate the location of the FOE, but these methods
suffer from a number of practical limitations when applied to noisy data.

An alternzte approach can be used which does not require the pricr determination of the FOE.
The translational flow field extends radially from the focus of expansion. From the arguments given
above, we know that over any local area away from the FOE, variations in the direction (but not
necessarily magnitude) of the translational flow field will be small. Flow arising due to moving
objects is of course not subject to this restriction. The gradient of flow field direction can thus
be used to detect the boundaries of moving objects. At these boundaries, flow direction will vary
discontinuously?

A complementary technique is available to deal with situations in which translation but not
rotation is known. We can expect these situations to be rare, however. If the direction of translation
were known over some interval of time, it would be an easy matter to determine the rotation by
examining the rate of change of direction.

*Marr [14] claims “if direction of [visual] motion is ever discontinuous at more than one point - along a line, for
example, - then an object boundary is present.” Note that this is only necessarily true if no camera rotation is
occurring {or equivalently, if camera rotation has been normalized by using the translational flow field).
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8.2.2 Active tracking.

A vision svstem which can actively control camera direction is capable of tracking regions of interest
over time. keeping some particular object centered within the field of view. Tracking regions
of interest is desirable for many reasons other than the detection of moving objects (e.g.. [13]),
though the analysis of imagery arising from a tracking camera has not received much study by the
computer vision community. If there are significant variations in depth over the visible portion of
the background and if moving objects are relatively small with respect to the field of view, then
moving object detection based on tracking can be accomplished without any actual knowledge of
camera motion. (For motion detection. the tracking can easily be simulated if the camera is not
actively controllable.)

If an object is being tracked. then its optical flow is zero.?> Flow based methods for determining
whether or not a tracked object is moving must depend wholly on the patterns of flow in the
background. Object tracking helps in moving object detection because it minimizes many of the
difficulties due to camera rotation. When dealing with instantaneous flow fields, we can decompose
the problem by considering all translational motion to be due to movement of the camera platform
and all rotational motion due to pan and tilt of the camera to accomplish the tracking. (We will
disregard any effects due to spin around the line of sight.) Consider the effect of tracking a point
that is in fact part of the environment. Tracking is effected by generating a rotational motion that
exactly compensates for the translational flow at the center of the image. This is accomplished by
choosing F'r such that:

_ F.(0.0) ()
r(0,0)

For a small enough neighborhood, F; and F, can be treated as constant, leading to the following

flow equation:

F.(0,0) =

1 1
Firack(P) = (%‘j’ - 7‘(—0,0—)) F, (8)

The effect on the optical flow field is that in the neighborhood of the tracked point, the direction of
flow will be approximately constant (modulo 180°), with a magnitude dependent on the difference
between the range to the corresponding surface point and the range to the tracked point.

Now, consider tracking a point that is moving with respect to the environment. If environ-
mental surface points are visible in the neighborhood of the tracked point, F; and F, are no longer
constant within the neighborhood. For environmental points:

Ft(uw) (enw) Ft(object)
Firack(P) = ) +F, _T(O-,-B)— (9)

F,(e*), F.(") and F,(°%¢") will in general differ in orientation. If there is a variation in range to
visible environmental points, then there will be a variation in direction of observed flow over the
neighborhood. (Note that detection is not possible if there is no variation in r(p) over the visible
environment. This situation is similar to that depicted in figure 1.)

3To simplify discussion, we ignore the case of an chject rotating in depth. The method developed does in fact
dea] effectively with this situation.




Figures 2 and 3 illustrate the effect. Figure 2 shows the optical flow over a neighborhood in
which no motion is occurring with respect to the environment. Figure 2a shows the flow before any
tracking motions are initiated. The dashed line indicates the translational component of flow. The
rotational component of flow is indicated by the dotted line. The solid line is the observed optical
flow. the sum of the translational and rotational components. The translational components are
parallel. The variations in magnitude correspond to underlying variations in range. The rotational
components are constant over the neighborhood. Note that the observed flow varies in orientation
- as previously indicated. orientational variability alone is not enough to detect moving objects.
Figure 2b shows the flow that results when the point in the center of the region is being tracked.
The center flow is of course zero. The dashed lines now indicate the flow that would be observed
without tracking. The dotted lines indicate the rotational flow that is introduced to stablize the
center point withing the field of view. The solid line shows the resulting optical flow. Note that
the flow vectors are parallel, but in this case differ by 180°.

2a: Before tracking 2b: After tracking

Figure 2: Tracking a Stationary Surface Point.

Figure 3 shows the same flow vectors in the case where the center point corresponds to a moving
object and the two other points correspond to portions of the environment. Note that in figure 3a,
the translational flow varies significantly in orientation. If we actually knew the translational flow,
this fact would be enough to determine that a moving object was present. Without information
about camera rotation, however, we must resort to more indirect methods.

7 Detection Based on Flow/Depth Constraint.

Recently, efforts have been made at developing integrated approaches to analyzing stereo and
motion (e.g., (6, 16]). These approaches simultaneously deai with motion and stereo disparity,
either by comparing flow fields taken from different viewing positions or by establishing point
correspondences over both time and viewing directions. Similar multi-cue analysis can greatly
aid in the detection of moving objects. We claim, however, that it is not necessary to adopt a
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3a: Before tracking 3b: After tracking

Figure 3: Tracking a Moving Object.

strategy requiring the unified low-level integration of motion and stereo. Rather. depth estimates
from whatever sources are available can be used. In addition to stereo. these sources can include
the full range of non-motion depth cues: familiar size, focus, gradients of various properties, aerial
perspective, and many more (17]. Furthermore, while precise estimates of depth are obviously
useful, relative depth or coarse approximations to depth can also aid in the analysis.

7.1 Objects moving on surfaces.

Knowledge of the shape of environmental surfaces can be used to simplify the motion detection
problem. Scene structure may be known precisely (e.g., the range to visible surface points) or in
terms of general properities (e.g., significant depth discontinuities can be expected). If moving
objects must remain in contact with environmental surfaces (e.g., vehicular motion), a less complex
technique depending only on knowing the image plane locations corresponding to discontinuities
in range is possible. If no objects are moving within the field of view, equations (1-3) show that
flow varies inversely with distance for fixed p. Both F, and F vary slowly (and continuously) with
p. Discontinuities in F thus correspond to discontinuities in r. This relationship holds only for
relative motion between the camera and a single, rigid structure. When multiple moving objects
are present, equation 1 must be modified so that there is a separate F,() and F) specifying the
relative motion between the sensor and each rigid object. Discontinuities in flow can now arise
either due to a discontinuity in range or due to the boundaries of a moving object. If independent
information is available on the location of range discontinuities, and other discontinuities in flow
must be due to moving objects.

The motion detection problem becomes particularly simple if the environment is planar. In

this case, depth discontinuities are not possible and any discontinuity in flow (either direction or
magnitude) corresponds to the boundary of a moving object. Note that it is not sufficient to know
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simply that the environment is 2 “smooth™ surface. From some viewing positions. even smooth
surfaces may exhibit range discontinuities.

7.2 Direct comparison of depth and flow.

A simple way of combining depth and visual motion to detect moving objects is possible if accurate
3-D position information is available for a sufficient number of surface points in the environment
and on any moving objects. If both the optical flow and the depth are known for a collection
of surface points in the environment. then equations (1)~(3) can be used to create a system of
equations which can be solved for the parameters of motion T(*™") and wle™) | (Knowing depth
values makes this an easier task than the standard structure-from-motion problem.) If the collection
of points includes some values associated with the environment and others associated with one or
more objects moving with respect to the environment. the system of equations used to solve for
T and w will be inconsistent. Checking the system for consistency can therefore be used as a test
for the presence of a moving object (e.g., a test for non-rigid motion in the field of view). Only
the consistency of the system is important. The actual values of T and w are not relevant to the
detection problem.

7.3 Indirect comparison of depth and flow.

The availability of accurate 3-D position estimates depends in large part on having accurately
calibrated camera systems. Not only is this calibration difficult, but it is continuously subject to
variability due to mecl nical compliance. Relative measures of visible motion and/or stereo can
be used to avoid this calibration problem (e.g., {18]). For example, Reiger and Lawton have shown
how to use local spatial differences to minimize difficulties due to rotation [19). If no moving objects
are visible, then large local differences in flow can only be due to a change in depth. If p{*) and
p‘?) are image points on either side of such a boundary, then from equation (1) we have:

‘. . Fpt)  Fy(pld))
Fr(p( ))-Fr(p(l))+ r‘(p(l)) - r(p(J))

If p{) and pl) are sufficiently close, F.(p(") = F,(p{)) and Fi(p{?) x~ Fy(p?). As a result the
rotational component of flow cancels out in the spatial difference and:

Fyp) A (é)

That is, the difference in flow across the edge is proportional to the difference of the reciprocal of
depth across the edge. The relationship between stereo disparity and depth is very similar to the
relationship between optical flow and depth:

AF = ‘ (10)

AF ~

(11)

d(p) = du(p) + ",—*(‘f)l (12)
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where d(p) is the stereo disparity at p. dy is a term dependent on the camera vergence. and d; is
a term dependent on the baseline separating the cameras. Using the same argument as above, we
have:

Ad = ”db(P)A (%_-)’i (13)

Over a local neighborhood. F; and d, will remain essentially constant, while .’.\-}- will generally vary.
Dividing equation (11) by equation (13) shows that the ratio of AF to Ad remains constant, as
long as the points over which the differences are taken are the same for flow and disparity.

Flow boundaries associated with moving objects are not subject to this constraint. As a result
we can detect moving ob jects by looking for local neighborhoods over which the ratio AF/Ad varies
significantly. We never have to solve for the actual depth. nor do we need to know the functions
F.. F.. d,. or dy. The solutiun does not depend on information about camera motion or relative
camera geometry. For this approach to work, however, there has to be significant changes in depth
over the background, not just between the background and any moving objects. There is reason to
believe that such variation is important to a large class of moving object detection algorithms.

8 Examples.

All of the methods described in sections 6 and 7 have been tested experimentally. Four examples
are presented below, all involving a moving camera and potentially moving objects. Two cases
exploit the epipolar constraint. The first of these involves a situation in which camera rotation
is known, but not camera translation. In the second case, a potentially moving object is being
actively tracked. Results are also presented for two methods utilizing constraints resulting from
the comparison of depth -and flow. The simplest of these involves objects moving over a smooth
environment. The final example compares flow and disparity across boundaries of possibly moving
objects, using the technique of section 7.3.

Figure 4 shows the first frame in a sequence of of images of an outdoor scene. In this example,
the camera rotates and translates with respect to the environment while the toy vehicle moves
to the right between image frames. The rotational velocity of the camera with respect to the
environment was measured. The optical flow field shown in figure 5 was obtained by the token
matching technique described in [20]. The translational flow field shown in figure 6 was obtained
by subtracting the rotational flow component computed from the known rotational velocity from
the observed optical flow field (figure 5). The gradient of flow direction in the translational flow
field was used to detect the boundaries of moving objects. Figure 7 shows the detected boundary
of a moving ob ject overlaid onto the first frame of figure 4.
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Figure 5: Optical flow field obtained from the image sequence of figure 4.
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Figure 9: Optical flow field obtained from the image sequence of figure 8.




Figure 10: Histogram of the flow direction of the optical flow vectors in figure 9.

As a comparison, a similar experiment in which the tracked object, a rock, is stationary with
respect to the environment while the camera is moving was also preformed. A pair of images similar
to that of figure 8 were obtained. The resulting estimated optical flow field is shown in figure 11. Its
corresponding histogram is shown in figure 12. Note that only one distinct peak is observed in this
histogram. The global variation in flow direction in this case was computed to be approximately
11° which is significantly smaller than that of the previous example.

An image sequence starting with the frame shown in figure 13 is used to illustrate the technique
for detecting objects moving in a smooth environment. In this example, the camera moves with
respect to an environment consisting of various small pieces of hardware lying on a planar surface.
The optical flow field shown in figure 14 was obtained in the same manner as in figure 5. Figure 15
shows the locations of large variations in optical flow values, corresponding to the boundary of a
moving object.

A stereo image sequence starting with the stereo pair shown in figure 16 is used to illustrate
the technique of indirect comparison of flow and disparity as a basis for moving object detection.
Both the flow field shown in figure 17, and the disparity field shown in figure 18 were obtained using
the method of figure 5. Comparing the ratio of the change in disparity values to the change in flow
values across neighboring points, and selecting as the boundaries of moving objects those areas in
which there is a distinct discontinuity in that ratio, results in the identification of the boundaries
indicated in figure 19.




Figure 11: Optical flow field obtained from tracking an object which is stationary with respect to

the environment.

Figure 12: Histogram of the flow directions of the optical flow vectors in figure 11.
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Figure 14: Optical flow field obtained from the image sequence of figure 13.
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Figure 15: Boundary of a moving object overlaid onto the first image of figure 13.

Figure 16: First pair of stereo images in a sequence.
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Figure 18: Disparity field obtained across the stereo pair in figure 16.




Figure 19: Boundary of a moving object overlaid onto the right image of the stereo pair in figure 16.

9 Discussion.

3.1 Which method to use?

This paper presents a collection of loosely related techniques for visually detecting moving objects.
Detection based purely on visual motion from a single camera seems quite difficult. Each of the
methods presented here uses some sort of additional information, either about current camera
motion or scene structure. The methods are characterized by the additional information used, the
underlying constraints exploited, and the particular computational structure used to implement
the technique. It is likely that reliable moving ob ject detection will require several complimentary
techniques, along with a method for selecting which detector to trust in any particular situation.

9.2 Computational structure.

The methods described above can be grouped into three classes. Point-based techniques (com-
pletely known motion) compare individual optical flow vectors against some standard to determine
incompatibilities with the motion of the camera relative to the environment. In all cases described
here, the compatibility measure is based on a directional constraint associated with the focus of
expansion of the translational flow field. Point-based methods have the advantages of computa-
tional simplicity and the ability to detect very small moving objects. They will be most effective
when parameters of motion are known precisely and the magnitude of the translational flow field
at the point in question is sufficiently large to allow an accurate estimate of direction. Edge-based
techniques (known rotation, smooth surface) roughly correspond to traditional edge detection.
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Edge-based motion detection is characterized by the differential flow properties examined and bv
the filtering technique used to separate edges due to range discontinuities from those due to moving
objects. The approach is effective when surfaces are smooth and techniques exist for accurately
locating those range discontinuities that do exist. Edge-based methods have the advantage of spec-
ifving the outline of moving objects that are detected. They are likely to be of limited use when
moving objects are quite small. Region-based techniques (tracked object. depth/flow comparisons)
examine optical flow values over a region. searching for distributions incompatible with rigid mo-
rion. As with edge-based approaches. the viewed region must include portions of both object and
environment. As long as the region includes portions of both object and environment. this is an
efactive test for moving objects that does not require any information about camera motion. The
region-based method based on tracking potentially moving ob jects does not require any information
about camera motion. but does require that there be significant variations in range over the visible
portions of the environment.

9.3 Limitations.

All detection algorithms founded on the motion epipolar constraint share two important short-
comings. First, environmental flow vectors will be small near the FOE regardless of the ranges
involved. As a result, detection based on flow orientation will be unreliable within a region around
the FOE.* This means that epipolar-based methods will have difficulties for viewing directions
close to the direction of motion. This is of course the direction in which moving object detectior
is likely to be most important. One heuristic for partially overcomming limitations near the FOE
is to look for large magnitude values of translational flow near the FOE. Such values correspond
either to moving objecis or to environmental points that are very close to the camera. Secondly,
while the motion epipolar methods were developed to allow for the possibility of a moving camera.,
translational camera motion is actually a requirement. Without translational motion, there is no
motion epipolar constraint to violate. More specifically, not only must the camera be moving,
but significant portions of the visible environment must be sufficiently cloce to generate detectable
non-zero translational flow values. Most methods based on the depth/flow or rigidity constraints
should work for both moving and stationary cameras.

No method for detecting moving objects will be effective if it depends on knowing precise
values of optical flow. Techniques for estimating optical flow are intrinsically noisy (e.g., see [22]).
Additional difficulties arise due to the idealized nature of equations (1-3). Real cameras are not
point projection systems. Substantial effort is required to accurately determine the values of z and
y in (1-3). Geometric distortions in the optical and sensing systems affect measured locations on
the image plane. Variabilities in effective focal length can be substantial. Reliable techniques will be
based on searching for large magnitude effects in the flow field [23]. All of the methods described
above compare flow vectors to some predetermined standard, or look for significant differences
across flow boundaries. As a result, all deal with relatively large magnitude effects. Reliability is

‘Lawton talks about a “dead zone” around the FOE within which no information based exclusively on camera
motion is available [21]. This effect is a problem not only for moving object detection, but also for techniques such
as motion stereo.
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still dependent on scene structure. the nature of camera motion. and position in the visual field
relative to the direction of translation.
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ABSTRACT

The detection of moving objects is imponant in many tasks. This
paper examines moving object detection based primarnily on visval
motion. We conclude that in realistic siniations, detection using
visual informanon alone is quite difficult, particularly when the
camera is also moving. The availability of additional information
about camera motion and/or scene structure greatly simplifies the
problem. We deveiop detection algorithms for the cases in which 1)
camera mouon is known. 2) only camera rotabon is known, 3) only
camera transiation is known, 4) objects move in contact with a
smooth surface. and S) an object is being acuvely tracked, but the
camera mouon associated with the tracking is not known precisely.
Exampies of several of these techniques are presented.

1. Introduction.

One important function of 2 vision system is 10 recognize the
presence of moving objects in a scene. f the camena is statonary
and illumination constant, this can be done by simpie techniques
which compare successive image frames, looking for significant
differences. If the camera is moving, the problem is considerably
more compiex. For the purposes of this discussion. moving objects
are taken to be any objects moving with respect t0 the stationary
porunons of the scene, which we refer t0 as the enviroamenr. For a
moving camera, both moving objects and stationary postions of the
scene may be changing position with respect 1o the camera and thus
generatung visual motion in the imagery. A moving camera leads 10
difficulties because of the need to determine objects moving with
respect W the environment, rather than the much easier problem of
finding objects moving with respect to the camera. In this paper, we
deal with the problem of detecting moving objects from a moving
camera based on optical flow.

The visual detection of moving objects is a surprisingly
difficult tagk. A simple example illustrates just how setious the
probiem can be. Consider the optical flow field shown in figure 1,
which appears 10 show a smail, squase region in the center of the
image moving to0 the rigit and surrounded by an apparentiy station-
ary background. Such a flow field can arise from several equaily
plausibie situations: 1) The camers is stationary with respect to the
environment, and the central region corresponds to an object mov-
ing 1o the right 2) The camera is moving 1 the left with respect to
the environment, most of the environmen is sufficiently distant so
that the generated optical flow is effectively zero, while the central
region corresponds to a surface near 10 the camera but stationary
with respect to the environment. 3) The camera and object are mov-
ing with respect (10 both the environment and each other. though the
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environment is sufficiently distant so that there is no perceived opt-
cal flow. It is not possible to tell whether or not this seemangly sim-
ple pattem corresponds to a moving object!

_Figure 1 provides one example of why a general and reliable
solution to the problem of moving object detection based only on
visual modon is not feasible. Robust solutions require that addi-
tional information about camera motion and/or scene structure be
available, In this paper, we examine a variety of types of informa-
ton that might be avaiable. Each information source places con-
mumonﬂnopuca!ﬂowﬁeldsumcanbegmxedbyamm
moving through an otherwise static environment. Violations of
uﬂecommueumsmmanlydmlomovmgobm

Y
.
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Figure 1: Is The Centrai Region a Moving Object?

Figure 2 summarizes potential sources of information and the
associated constraints on optical flow. The next section lists generai
properues needed by reliable detection algorithms. .Following this
lsld_envmofemafmc flow consmraings. We conciude with
emmmmofawofmmmm
observations about the namre of these methods.

2. Assumptions.

We san with the presumption that motion detection algo-
ummuumwmummmm :
mﬁdda!vicwmbcrelmnly' narrow.
MWMwMonmemofwidemm-
ing systems. Such systems may not be available in 2 particular
sitation. and if used masy increase the difficulty or recognizing

smail moving objects. As 3 resuit, detection algorithms should not
depend on subde properties of perspective.
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Knowing: Yields a constrsint on: !
I

full parameters of motion | flow values

panmeters of rotation variability of flow direction

surfaces are smooth local vanability of direction
or magnmde of flow

object is being racked global varniability of
direcoon of flow

Figure 2: Constraints on flow.

The image of moving objects may be small with respect 1o the field
of view.

This is clearly desirable for reliability. Moving objects may be far
away and subtended by relatively small visual angles. We need
methods capable of idennifying single image points, or at least small
collections of points. as corresponding 10 moving objects. Detec-
tion algorithms thus cannot depend on vanauons in flow over a
potenually moving object.

Only monocular imagery is qvailable.

This is equivalent 10 the situation where objects of interest can be
far away relative t0 the camera base-line in a stereo viewing s'"1a-
o

Estimated optical flow fields will be nousy.

No method is capable of estimating optical flow with arbitrary accu-
racy. Motion detection based on optical flow must be toierant of
noisy 1nput.

Only “instantaneous'’ oprical flow is used.

A restriction to instantaneous flow eliminates the use of temporal

derivatives of low and/or muitiple views at distinct time intervais.
Temporal differemtistion will increase noise in the estmated flow
values. Use of muitipie views increase computational complexity.
(In fact, experience with There are reasons o believe that muiti-
frame analysis techniques may in fact improve relisbility (1),
though they are not examined in this work.)

3. Constraints on Optical Flow.

The basic mathematics govemning the optical flow generated
by a moving camers is weil known. We take our noution from (2],
using & coordinate system fixed to the camers (e.g. the worid can be
thougit of s moving by & stationary camera). Optical flow values
are 3 function of imags location, the relative motion between the
camers and the surface point corresponding to the image location,
and the distance from the camera (0 the corresponding surface ponnt.
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Let p=(x,y) refer to an unage location, where x and y have been
normalized by the focal length of the camers. Lt P=(X,Y.2Z) be
the coordinates of the surface point projecting onto (z, y ), specified
in 2 coordinate system with origin at the camera and Z axis along
the optical axis of the camera. Specify the mouon of the pount at
(X.Y.Z) with respect 10 the camers in terms of a ransiational velo-
city T=(U.V. W) and a2 roatonal velocity @=(4.8.C)7. The

;pu’cal flow. B =(u,v). at p is purely a funcoon of x. y, T, @ and

Umg, *U, , VEBV Y, )

where u is the x component of flow, v is the y component of flow.
and

U +xW VW
-—%—.v.-—;i— @

4 = Axy -8z + D+ Cy

v, = A(y + )=Bxy ~-Cx @

Let the parameters specifying camera mouon with respect 1o the
environmert be T, and @, and the comresponding parameters spect-
fying relative mouon between the camera and a scene pout P be Tp
and op.

3.1. Known transiation and rotation.

The parameters of camera moaon constrain possible opacal flow
values that can occur due to camera moaon with respect (o the
envirorment.

If compiete information about (nstantaneous camera Mouon 1s
availsble, then T, and @, are known If the camers is translating
but not rotating with respect 10 the background. @, = 0 and al}
flow vectors due to the moving image of the background will radiate
away from a focus of expansion (FOE). From equation (1), it 1s
casy © see that the image plane location of the FOE is at:

U 14
Yoo =W Ve T YW C))

The location of the FOE depends only on the direction of wansia-
tion, not on the speed. so methods for mouon detection which
depend on the location of the FOE do not actually require the com-
plete parameters of transiational mouon. The FOE may not lie
within the visible poruon of the image (and in fact may be a focus
of comtraction). A FOE at « cofresponds w0 pure lateral mouon.
which generstes a parallel optical flow pagem. At every image
point p, knowing the FOE fully speaifies the direction of opucai
flow associated with any surface poiunt stationary with respect to the
environment. ALp:

= ant =Wy a o
O = a0 U—ws ' e = N u' )

where 95, is the direction from p towards the FOE and 8y, is the
direction of optical flow at p. (Note that the first equation is suil
well defined even if W = 0, corresponding to a focus of expansion at
= in image coordinates.) Any flow values with a different direction
correspond to moving objects (3]. E.g.. moving objects exist when-
ever {8y, — 64, | > ¢ for some sppropriate €. (It is posnible that
moving objects coincidentally generste flow values compatible with
this constraing.) This approach requires the estumation of only the

direction of flow, not either the magrutude Or spatial vananon of
flow,

Camena rotation introduces considersble complexity.
Knowledge of camera motion no longer constrains the direcuon of
background flow. Nevenheless, at a given point p, flow is con-
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strainted 0 a one-dimensional family of possible vector values. The
family is givent by (1) —(3) where Z ranges over ail positive vaiues.
The analysis can be simplified because of the linear nature of (1).
4, and v, depend only on the parameters of rotation and not on any
shape property of the environment. Because the values of u, and v,
at a parucular pont p do not depend on Z. they can be predicted
knowtag only ®. These values can be subtracied from the observed
optical flow field. leaving a rransianional flow field:

Fi= (g vy ) = F’Fr . Fr. (4 . v,) (6)

where 4. and v, are defined in equation (3). Thig field behaves just
as if no rotanon was occuming, and thus moving objects can be
located using the FOE technique described above. For the
remainder of this paper. when rotation is present. we wiil take the
term FOE to refer to the focus of expansion of this transistional
field.

In principle, even if camera motion is not imown T, and @,
may be estimated from the imagery (2], subject to a positive. multi-
plicanive scale factor for T,. Two serious problems exist. however.
Narrow angles of view make estimation of camers motion difficuit,
as significantly differemt parameters of motion and surface shape
can yield nearly idenncai optical flow patters (4]. In addition, tech.
niques such as (2] uses a giobal muumizanon approsch which will
not perform weil if moving objects make up a substannal poruon of
the field of view. A clustenng approach (e.g. [5]) can be made
tolerant of the moving objects. though grest difficuity can be
expected dealing with a five dimensional cluster space.

3.2. Known rotation.

The parameters of camera rotation constrain the local variability of
optical flow direction that cam occur due 10 camera monon with
respect 1o the environmens.

Often. information about camera rotation is available, even
when the direcnon of tansiation is not known. Non-visual informa-
tion about camers motuon often comes from inertial sources. Such
sources are much more accurate in determining rotation than rans-
lation. Rotation involves s continuous acceleration which is easily
measured. The determination of transiation requires the integration
of accelerations, along with a stasting boundary value. Errors in
estimated transistion values rapidly accumuiate. A simpie tech-
nique allows the detection of moving objects when only camera
rotanon is known.

In the previous sections, knowledge of camera rotation made it
possible 1o compute the rmsiational fiow feld, F,. Knowiedge of
transiation was then used 0 locate the FOE snd thus constraint the
direction of flow vectors associated with the environment. If only
roustion is known. then it is stll possible to determine the transia-
tional flow field. but not the FOE. Visual methods could be applied
to the transistional flow feld 10 estimate the Jocation of the FOE,
but these methods suffer from s number of practical limitations
when spplied 0 noisy data. An alternate approach can be used
which does not require the prior desermination of the FOE. The
transistional flow field extends radially from the focus of expansion.
At any poirs significanty sway from the FOE, the direction of flow
(but not necessarily the magnitude of flow) will vary siowly. Direc-
tional variability can be evaluated besed on equation (5):

S ___WE )W)
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The gradiemt of the direction of the transiational fow field can thus
be obtained as
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where (X5, J'fee ) i8 the image plane location of the FOE. We can
see from the above equation that over any local ares away from the
FOE. vanations \n the direcnon of the transistional flow fieid will
be smail. Flow arising due to moving objects is of course not sub-
ject 0 this restriction. The gradient of fiow field direction can thus
be used to detecy the boundanies of moving objects. At these boun-
daries, flow direction will vary discontinuously’.

®

A complementary technique is available 1o deal with simua-
toas in which transiation but not rotaton is known, We can expect
these simations t0 be rare. however. If the direction of transiation
were kmown over some interval of ime, 1t would be an easy master
10 determine the rotation by examaning the rate of change of direc-
ton.

3J. Motion over smooth surfaces.

Object mocion over smooth surfaces constrains the local variability
of flow.

Knowiedge of the shape of environmental surfaces can be
used o sumplify the motuon detection problem. Scene structure may
be known precisely (e.g. the range to visible surface pouus) or 1n
terms of general properities (e.g. significant depth disconnmuties
can be expected). Information about scene sucture can come from
visual sources (e.g stereo [9,100), or from pre-existing models of the
environment. If both the cptical flow, (4,v), and the depth, Z, are
known for a collection of surface poimts in the environment, then
(1) = (3) can be used to crease & system of equations which can be
solved for the parameters of motion T and & If the collection of
points includes some values associated with the eavironment and
others associsted with one or more objects moving with respect to
the environment, the system of equations used to solve for T and @
will be inconsistent. Checking the syswem for consistency can there-
fore be used as a text for the presence of a moving object (e.g. a test
for non-rigid motion in the field of view.)

If moving objects must remain in contact with environmental
surfaces (e.g. vehicular motion), 2 less complex technique depend-
ing only on knowing the imsage plane locations corresponding to
discontinuities in range is possible. If no objects are moving within
the Beid of view, equations (1) ~ (3) can be simplified into the fol-
lowing form:

A1)
9
fow®) = f:@)+ T ®

where st an imsge point p. flow(p) is the optcal flow (3 two-
dimensional vector), f, is the component of the flow due to the
rotion of the scene with respect 1o the seasor., f, is dependent on
the transiational motion of the sensor and the viewing angle reistive
10 the direction of transiation, and r is the distance between the sen-
sor and the surface visible at p (i.e. the value of Z in equation 2
cotresponding o the image location p). For fixed p, flow varnies
inversely with disance. Both f, and /, vary slowly (and continm-
ously) with p. Discontinuities in flow thus correspond to discon-
tingities in r. This relationship holds only for reistive moton
between the camera and a single, rigid strocmre. When multiple
moving objects are present, equation (9) must be modified so that

! Mare (6] claime i direcoion of (viseal] motion is ever disooatimsous o move
n-a-p- ddeng & lias, for cxample, ~ then @ objest bowndey »
preset.”* Nots that this is only nssessarily wue if 50 enmers joWSion i SOONTIRG
(wl'q:vul‘hly if camers rotstion has bem novmalised by using the wwsletion-
d 'Y




there is a separate f,*) and f,) specifying the relative mouon
between the sensor and each rigid object. Discontinuiues 1t flow
can now anse either due 10 & disconnnuity in range or due to the
boundaries of 3 moving object. 1f independent informaton 1s avail-
able on the location of range disconanuiaes, and other disconunu-
ties in flow must be due 10 moving objects.

The motion detection problem becomes parucularly simpie if

the environment 1s planar. In this case, depth disconunuities are not
posmible and any disconnnuity in flow (either direction Or magni-
tude) corresponds o the boundary of 2 moving object. Note that it
is not sufficient to know simply that the environment 1s a *‘smooth””
surface. From some viewing posiuons, even smooth surfaces may
exhibit range disconnnuities.

3.4. Tracking regions of interest.

Tracking an object constrains the global vanability of the direction
of flow in the surrounding area.

A vision system which can actively control camera direcuon is
capable of racking regions of interest over ume. keeping some par-
ucular object centered within the field of view. Tracking regqions of
interest 1s desirable for many reasons other than the detecuon of
moving objects (¢.g. (11]), though the anaiysis of imagery ansing
from a uacking camera has not received much study by the com-
puter vision commuruty. [f there are sigruficart vanauons in depth
over the visible poruon of the background and if moving objects are
reiatively small with respect 10 the field of view. then moving object
detection based on tacking can be accomplished without any actual
knowiedge of camera motson. (For mouon detection. the tracking
can easily be simulated if the camera 1S not actively controllable.)

If an object it being tracked. then its optical flow is zero.
Flow based methods for determuning whether or not 8 tracked object
is moving must depend wholly on the pattemns of flow in the back-
ground. Object tracking helps in moving object detection because it
minimizes many of the difficulties due to roution. When dealing
with instantaneous flow fieids, we (an decompose the problem by
considering all translational motion 10 be due to movement of the
camers platform and all roagonal moton due to pan and tilt of the
camers (0 accomplish the tracking. (We will disregard any effects
due 10 spin around the line of sight ) Consider the effect of tracking
a poimt that 13 in fact part of the environment. The transiational
component of mouan induces an optical flow patem field extends
Wymufmofemmmwmmm
the range w0 the co| surface pouws. Over a local ares
away from the focus of expansion. the direcon of tansiational flow
will be sppromumately constant. The rotational componem of
raotion wduces a flow patern which over a local ares is approxi-
mately constant in both direction and magnitude. The magniude
and direcuon are exactly opposite the transistional flow of the
tracked point, me(:)m(‘.&) it is easy w0 see that at
the tracked point (x.y ) = (0,0)

|4
T o

u==B, v,=mA ay
Since the optical flow is zero at the tracked point. we have

-%-B =(, or u=ms=u, (12)

-%+A 20, or v, m=-v, (13)

The effect on the combined fields is that in the neighborhood of the
tracked point, the direction of iow will be approximately constant

(modulo 180*), with s magnitude dependent on the difference
between the range 10 the corresponding surface pount and the range
10 the tracked pount. Now, consider Tacking & pourxt that i3 moving
with respect (0 the environment. If environmental surface poiats are
visible in the neighborhood of the racked point, and if there 18 2
vanation in range to these environmental points. then there will be a
variation in direction of flow over the neighbothood.

4. Examples.

A set of experiments on moving object detection based on the
techniques discussed in the previous sections have been preformed
on real images. Experimental resuits are presented in this secuon
for the cases in which 1) the camer rotanon 1s known. 2) objects
move in a smooth environment. and 3) a potennally moving object
is being acuvely tracked.

Figure 3 shows the first frame in a sequence of of images of an
indoor scene. [n this exampie, the camera rotates and transiates
with respect 10 the environment while the toy vehicle on the table
moves (o the right between image frames. The rotagonal velocity

of the camera with respect to the environment was measured. The
optical flow field shown in fgure 4 was obxaned by the wken
maiching technique described in (10]. The transiational flow field
shown In figure 5 was obained vy subracung the roatonal fow
component computed from the known rotanonal velocity from the
observed optical flow field (figure 4). The gradient of flow direcunon
in the transiational flow field was used (0 detect the boundanes of
moving objects. Figure 6 shows the detected boundary of a moving
object overfaid onto the first frame of figure 3.
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Figure 4: Optical flow field obtained from

the image sequence of figure 3.
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Figure 5: Transiational flow field determined
from the optical fiow fieid of figure 4.

Figure 6: Boundary of 2 moving object
overiaid onto the first image of figure 3.
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An image sequence starting with the frame shown in figure 7
is used to wlustrate the technique for detecting objects moving 1 2
smooth envirormnent. [n this exampie, the camera moves with
respect 10 an environment consisting of nuts and boits lying on a
planar surface. The opdcal flow field shown in figure 8 was
obtained in the same mamnner as in figure 4. Figure 9 shows the
locations of large variations in optical flow vaiues, corresponding o
the boundary of a moving object.
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Figure 8: Optical ow fieid obtained
from the image sequencs of figure 7.




Figure 9: Boundary of a moviag cbject overiaid
onto the first image of igure 7.

lnﬂmlo.tmamuarobjeamu:mofmeimanis
i the camera while the camen is transiating ©© the
nght with respect 10 the environment. Figure 11 shows the
flow. Figure (2 shows s hisogram of the direc-
of the optical low. Note that there are two distinct peaks in
the hiswogram. The highest peak corresponds to the optical flow
vectors associated with the background and the second peak
corresponds to the optical flow vectors associated with the box and
the table in the foreground. The variation in flow direction over the
image was computed to be spproximately 26°, indicating that the
tracked object was in fact moving.

H
it

Figure 10: First frame of second indoor scene.

Figure 11: Optical Sow field obtained
from the image sequence of figure 10.

direc tion

Figure 12: Histogram of the iow directions
of the optical flow vectors in igure 10.

As 8 comparison. a similar experiment in which the tracked
object is stationary with respect o the environment while the cam-
ers is moving was also preformed. A pair of images similar » that
of figure 10 were obtained. mmmwm
field is shown in Figure 13. Its corresponding hissogram i
figure 14. Now that only ons distinct pesk is observed in this hisw-
gram. The giobal variation in flow direction in this case was com-
pused to be spproximately 14° which is significarely smaller than
that of the previous exampie.
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Figure 13: Optical Gow field obtained from tracking an object
which is stationary with respect 1o the environment.

fiow direction

Figure 14: Histogram of the flow directions
of the optical flow vectors in figure 13.

. Discussion.

The methods described above can be grouped into three
classes. Point-based techniques (known motion. known translation)
compare individual optical flow vectors against some standard to
determune incompanbilities with the motion of the camera relative
10 the envirormnent. n all cases descnbed here, the compatbility
measure 1s based on & directional constraint associated with the
focus of expansion of the transiational flow feld. Point-based
methods have the advantages of computational simplicity and the
ability o detect very smail moving objecs. They will be most
effective when parsmeters of mouon are known precisely and the
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magrutude of the translational flow field at the powt 1n quesuon 1s
sufficiently large to allow an accurae esnmate of direcuon. Edge-
based techruques (known romtion, smooth surface) roughly
correspond to traditional edge detection. Edge-based motion detec-
uon is characterized by the differennal flow properues examuned
and by the filtering technique used to separaste edges due (0 range
disconunuities from those due to moving objects. The approach is
effective when surfaces are smooth and techniques exist for accu-
rately locanng those range discontinuities that do exist Edge-based
methods have the advantage of specifying the oudine of moving
objects that are detected. They are likely to be of limited use when
mowing objects are quite small. Region-based techniques (tracked
object) examine optical flow values over a region, searching for dis-
inbutions incompatible with rigid mouon. As with edge-based
approaches, the viewed region must include poruons of both object
and environment. As long as the region includes poruons of both
object and environment, this is an effective test for moving cbjects
that does not require any information about camera mouon. The
region-based method based on tracking potentally moving objects
does not require any information about camers mouon. but does
require that there be significant vanations in range over the visible
poruons of the environment.

One region-based technique not discussed above 1s based on
an explicit check for ngidity. Several structure-from-mouon algo-
nthms provide an estimate of rigidity (11.12.13]. Such checks can
presumably be used to recogruze non-ngid mouon due o the pres-
ence of 2 moving object. Numernical structure-from-mouon aigo-
nthms have proven (0 be unsatisfactory in pracice due to severe
problems with ill-conditioning. It is not yet clear whether or not the
test for rigidity can be performed in a sufficiendy noise tolerant
manner to provide for reliable moving object detecnon.

No method for detecting moving objects will be effective if it
depends on knowing precise values of optical low. Technigues for
estimating optical flow are inminsically noisy (e.g. see (14)). Addi-
tional difficuities arise due to the idealized nansre of equations (1) -
(3). Real camerss are not point projecuon systems. Substantial
effort is required to accurately determine the values of x and y in
(2) and (3). Geometric distortions in the optical and sensing systems
affect measured locations on the image piane. Vanabilities 1n effec-
uve focal length 10 to focus can be substanual. Reliable techniques
will be based on searching for large magrutude effects in the flow
field (15]. All of the methods descnbed above compare tlow vec-
tors t0 some predetenmnined standard, or look for sigruficant differ-
ences across flow boundanes. As a resuit, all deal with refauvely
large magnitude effects, though reliability 1s dependent on scene
structure, the namre of camers motion, and posiuon in the visual
field relative w0 the direction of translation.

Many of the techniques described above are based on compar-
ing flow values at different points wichin the field of view. All of
these methods require that measurable optical flow exist for points
both in the environment and on moving objects. (Some require only
that the ransiational flow be measurable.) Such methods share three
important limitations: 1) they are ineffectual near the FOE, 2) the
camer: must be moving, and 3) portions of the visible environment
must be sufficiently close to generate recognizably non-zero transia-
tionai flow vaives. Near the FOE. flow due (o0 the environment will
be close to zero. regardless of range. if the camera 1s not moving,
all environmental flow values will be zero. The same is true 1f all
points in the environment are very distant relative to the speed of
transiation. These limitations do not apply just to the methods
listed above. as illustrated by figure 1, they are general problems
asyociated with any vision-based motion detection scheme that does
nat have accurste informanon about camera transiation and/or range
10 visible surface points.
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THE 24-D SKETCH
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1 Introduction.

[t has been known for many years that motion information provides a cue for depth. Two rather distinct
types of information are provided. Relative motion of surface points is an indication of the reiative depth
of the points. (In this article, we will use the term depth to indicate the range from the observer to visible
surface points.) If the surface points in question are part of the same rigid object, the analysis of relative
visual motion leads to the structure-from-motion and motion-from-structure algorithms currently receiving
much attention. Motion parallax also generates relative visual motion that provides information about the
overall spatial layout of a scene. The second motion cue to depth occurs at dynamic occlusion boundaries.
Surfaces on either side of such boundaries are moving visual with respect to one another. Until recently,
it was though that the depth cue at dynamic occlusion boundaries was due to the appearance (accretion)

or disappearance (deletion) of surface texture due to the occluded surface being progressively uncovered or
covered by the occluding surface.

We have shown that there is an alternate source of information for relative depth at dynamic occlusion
boundaries. This information comes from the relative motion of the boundary itself with respect to the
surfaces on either side. The invegtigation of this new cue to depth at surface boundaries is an excellent
example of the productive interaction between research in computational models of vision and research
in perceptual psychophysics. We start by outlining the computational theory of determining depth at
boundaries due to motion. Next, we describe experiments designed to determine whether this cue is used
in human perception. We finish with a number of open questions raised by this research. In particular, we
argue that Marr’s 2}—D sketch is inadequate for representing surface boundaries.

2 The Boundary Flow Constraint.

Visual motion can be used to locate surface boundaries (1). Edges in an image due to motion can arise from
far fewer causes than static image cues such as brightness, color, and texture. In particular, a discontinuity
in optical flow can occur oniy because there is a corresponding discontinuity in depth and/or two separate
objects are moving with respect to one another. Perhaps even more important, motion provides information

This work was supported by AFOSR contract AFOSR-87-0168, NSF Grant DCR-8500899, and NICHD Grant HD-16924.
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and Barrow and Tennenbaum (6]. Marr and Barrow and Tennenbaum suggest a computational architecture
with a bottom-up, linear data flow. Use of the boundary flow constraint requires that the boundary be found.
the motion of the boundary determuined. and the motion of the surrounding surfaces be determined prior
to the determination of relative depth. To complicate the computation further, the boundary itself may be
signaled only by visual motion. The linear data flow model imposes a predefined ordering on computational
operations. [t is not clear what ordering could work for boundary flow analysis and still perform adequately
for the many other types of low-level computations that are required.

There is an even more important implication. Marr's 2;—-0 sketch was proposed. in part, as an alter-
native to the purely 2-D segmentation-based representations that were then popular. The 2.1,—-D sketch was
considered as an advantage as it provided 3-D information about surfaces, while not requiring the global
organization of the image into “objects”. The 24-D sketch shares one critical deficiency with segmentation-
based representations, however. Both are two-dimensional representational structures. Edges in these rep-
resentations are separations between two regions differing in some visual property. What is missing is any
indication of the asymmetric nature of boundaries: edges corresponding to surface boundaries provide in-
formation about the occluding surface. but not the occluded surface. Thus. we need something like a 22-D
sketch in which overlapping surfaces can be described.

One explanation of why the subjective contour displays are more effective than the objective contour
displays is that the particular subjective contour that was used is a less ambiguous indicator of a depth
discontinuity than is the simple straight line which could have arisen from many different causes. The
suggestion is that some image cues suggest the existence of an “unsigned” depth boundary [7]. This cues
indicate that one surface is in front of another, without indicating which of the surfaces is actually nearer.
Cues such as boundary flow can then be used to determine that sign of the depth change. Computational

analysis of this sort requires a representation of boundaries more sophisticated than that provided by current
models.
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Cocerermintng Uiie presence of OCCLUSION based OLuy on lhage
Canernies, Qcecluding suriaces are recoguized \With ail approacn
LAC comoines mouion and contrast iformantion. i.: mernod ac-
rratery locauzes »dges, detects only 1Hose eugss ine.v 10 Corre-

Ulie secona technigue uses (lormation ano:t occlusion 1o aid In
‘ue matching process. .lost exisung matci:ng aigorithms tiiat
Te tolerant of occiusiou (00K for a parual correspondence ne-
-ween modei and ifnage features. if a parual maten s found. un-
.natched model components are assumed (0 ne tiuden by an oc-
iusion. This approach leads to diificulties because o1 the chances
or partial matches occurning concidentatly. i onr metnod. ..
1 Introduction. rmation about occiusion boundaries ts used 1o AxXpucitly idaen-
’v model [eatures that wiil not pe visibie in rne unage. iJost
A the remaining moael features snouid be tnaable (f rhe matcu
- in {act correct. Occluded moaei features are determ;nea baseu
.rectlv on nnage properties at houndaries. ratner rnan st on
/2 absence of an image teature al some expected location. i..o
nrenit 1S A aignificant decrease Iin amoiguity.

SOld TO SUTIace DounAaries, aild provides at ndication ol wnich
(0 0f an edae corresponds to the occiuaing suriace.

‘{4nv rompurathional moaeis for ovbiect recognition depend in
e WAV oo matciiung t\\'n-ﬁimensmnal onhiect moaeys to im-
.o watures. 2-D matcning 1s not lititea to template matching
zonitnms.  lecently. manv recognition approacnes nave neen
.e10ped wiich use three-dimensional part/obilect moaels anu
~ouisticateq $-D matening strategies. Jecause of tiie mghiv am-
Iious nature ot the prooiem. tiie final stage in sucu metnods .

vmieaiiv a verification step 1n winch hvpottesized tormation > DBackgrouna.
oout identification, position. and orientation 1s tseq (o project

:uogel hack Into the image to be matched against Thn actual
o - . . .
age teAtUres. 2.1 Combining motion and contrast information
for edge detection.

5 siguificant problems plague matching operations. i .:st ot
.. .mage leatures (lines, corners. noles. etc.) -annot he de-
srmined in a highlv reiiable manner. lodel features are often
<sing in fue ymage. Manv patterns aerected as image leatures
uer 1o not correspond (o actual obiect propertrs or are not
nrammed wirhin the models. Jecondiv. it COMDIEX SCANES N1 IPCLS
;e nrten narually occiuded. Dealing with occiusion nv accepting
(71131 MNALCKCs INCreases coMmDutational Comniexi™y wiie roquc-
.2 tue reuability of the matcihing process.

~egmentation schemes which combine motion and contrast infor-
sation date back to at least to the work ol Jain. ilartin, anu
vezarwal 1. This anproacn useq a dilference onerator netween
w0 trames to find areas tn tie tmage that had changed due 'o
:onon. A static segmenter was then fun Wirfun tnese areas ro

ad the honnaaries ot riic moving regions. [Lompson used a re-

.:0n merzer approacn that groupea pixeis into regions nasea on
-iuniarities 1 contrast and motion information 2. iHaves ang
> wnrk was supportea by AFOSR contract \I <R~ 1.3 ang 3aF “tin deveiopea an eage detector based on a nroduct of the spa-

i oL ResTingnyg .4l gradlent ana a temporal operator 4. [l purpose was ro




amit sensitivity to areas signaled by both static and dvnamic
»fects. More recently. Gamble and Poggio have developed a
"larkov Random Field model for recovering optical fow in a man-
net tnat integrated contrast boundaries with visual motion (4l
{eir anproacn constrained discontinuities in How to occur omy
Jaintensity eqges.

Relativeiv littie work has been done on differentiating between
wciucing ang occiuded surtaces without resort to fitting object or
nart moaels. \Waitz used constraints associated with line drawing
-»rrices tordentifv extremal contours and to determine which side
»{ suca a contour corresponded to an occluding surface (5]. Smit-
v and Bajesy identified occluding surfaces in stereo imagery by
‘oniparing corretations between frames for images patches on ei-
‘ner side of a boundarv '6). If the correlations differed substan-
iy, the bounaary was assumed to be due to occlusion and the
region with the highest correiation between views was assumed
"o correspond to the occiuding surface. Thompson. Mutch, and
Berzins snowed how edges in optical flow could be used to recog-
mize occiuding surfaces (7). Their approach is discussed in more
{etall :n section 3.

2.2 Matching.

[=mpiate matching was one of the first methods proposed for the
visual recognition of ob jects. Template matching utilizes a corre-
.ation measure between one or more model patterns and images
o be anaivzed. [nvariance to translation and/or rotation can be
obtained by appropriate scanning of the template pattern over
an tmage. While useful in some applications. template matching
sutfers from problems due to computational complexity and is
:naole to deal effectively with the matching of three-dimensional
:nodeis to two-dimensional imagery.

Recornition of three-dimensional objects is often done bv us-
'ag conngurations of image features to estimate how a three-
‘jimensional object is being projected into the two-dimensional
mage. The object model is subjected to the appropnate pro-
wction, resuiting 1n a prediction of the objects appearance in
‘he 1mage. A verification process is used to determine if the
aredicted configuration of object features actually appears in the
'mage 1e.g., (3.9.10]). Such methods avoid many of the problems
associated with straightforward tempiate matching.

Recognition of partially occluded objects has been a major chal-
‘enge lor many vears. \lost approaches attempt to find good
partial matches between subsets of object models and image fea-
rures ce.g.. 11.12.13]). Allowing for partial matches increases
*he likelihood of false positive classification errors. In addition,
rhe extraneous configurations of boundaries generated by over.
‘apping objects causes additional confusion.

some preiinunary attempts have been made to directly incorpo-
rate occlusion information into the matching process. Fisher de.
.eioped evidence for extraneous or missing image features based
on boundary topology and other information about the depth
nrdering of surfaces [14). Specialized heuristics were used to dis-
~ount the irrelevant mismatches during a venfication stage. Cas-
*an used the resuits of a partial matching process to determune

estimates of model features likely to be hidden by occiusions /15!
Evidence for visibility and occlusion came from a presumption
that visible features were spatiailv adjacent. rather than from
any three-dimensional analvsis of the imagery.

3 Motion-based Segmentation.

Thompson. Mutch. and Berzins develop an edge detector for op-
tical flow fields [7]. One important aspect of this work is that
motion-based edge detection directly vieids information about
which side of the edge corresponds to the occluding surface.
This identification is based on a comparison between the opu-
cal flow on either side of the boundarv and the visual motion
of the boundary itself. (Aperture effects usually require that all
image flows be projected onto an axis parallel to the normal to
the edge.} The principie underlving the identification of occiuded
surfaces is summanzed in the boundary flow constraint:

At o surface boundary, the visual motion of the bound-
ary itself 1s the same as the visual motion of the sur-
face generating the boundary.

At a boundary. we need only look at the image-plane motion of
the boundary (the boundary flow) and the optical low immedi-
ately to either side. Optical flow inconsistent with the boundary
flow corresponds to an occluded surface.

One problem with exploiting the boundary flow constraint is the
apparent need to determine the actual motion of the boundary.
{n many circumstances, this can result in a difficult correspon-
dence problem. {7] demonstrated how the motion of optical flow
edges can be related to the boundary flow constraint in a man-
ner that does not explicitly compute boundary motion. In that
work. the boundary that was moving was itseif indicated by a
motion cue. Here, we extend the result to show how any zero-
crossing style edge operator can be easilv used to distingwsh
between occluding and occluded surface. As shown in 7], with
an appropriate change of coordinate svstems it is sufficient to
consider only two cases. In one. two surfaces are moving towards
one another with equal but opposite optical flows. Iu the sec-
ond case. the surfaces are moving away from one another with
equal but opposite flows. Over time. the Lapiacian pattern at the
boundary will move with the surface to which it is attached. Ifa
zero-crossing edge detector is applied to an optical flow pattern.
all that is necessary to classify the edge is to observe the sign of
the Laplacian pattern as it transiates.

The situation is somewhat more complicated if edges are sig-
naled by some feature other than optical flow. In such cases. it
is necessary to consider both the contrast orientation of the edge
and the pattern of motion to either side. The sign of the Lapla-
cian function can be used to determine the direction of boundary
movement relative to the direction of the gradient at the bound-
ary. If we observe the value of the Laplaci>n at the zero cross-
ing and that value goes negative. then we xnow that the edge
has moved in the direction of the gradient. If the vaiue of the
Laplacian goes positive, then the edge motion is in the direction
npposite to the gradient. It is still necessary to compare edge




~OUONS and surface mouions. AZaln using 'ne coordinate svsrem

‘ransiofm. we need oniv determine winether the two surlaces are
OVIRg TOWATAS Of awav ITom €acn otner. {l 15 hul Neressary 10
;antitativery estimate actual surtace and boundary fows.

Ul odowing ajgoriinm impiements fnis process:

T.nd an edge point. 5. in lrame ta. Lombute the gradient
- . 13 any perceivabie [uncrion ol ¢ rnat
Wresnonas 1o surtace properties.

S Far. anere n

o Prawcrad opticat fow vatues ontoan axis paraiei to S 5.

Jormauze coordinates bv iocating an evaluation point r, =
T.~ f,inframe 1y. where f, is the average inter-frame fiow

‘

1 the neighboruood of Ia.

1. [hLedirection of Vi I,y) points towaras the siae of the bound-
.~V corresponding to the occluding surtace 1t S A5 h is
egative and the two surtaces are aDproaciiing one anotier
of ©7 wFyr is postive and the two surtaces are sepa-
sating.

[lie direction of Vif Tn) points towards the side ot the bouna-
.ty opposite the occiuding surtace i V7 i Fy) is posi-
“ive and the two surtaces are approacning one another or i[
T Iy is negalive and the two suriaces are separaung.

“ore tnat if surface mouion is parailef to e boungarv. no qeter-
simation of occiuding and occiuded surtaces ts made. [n fact. in
‘.45 situation no definitive determination is possibie based oniv
1 visual motion.

Orne advantage ol this particular aigorithm 1s tnat it directlv
rovides a mechanism [of combining motion-based voundarv de-
‘etion with static edge cues. Discontinuities in uptical tlow can
sV ooccur due to discontinuities in depth anasor due to two
:r1aces moving reiative to one another. [hus. tlow eages can
-rise from far fewer causes than edges due 10 cnanges In inten-
-.ry. texture. cotor. etc. Unfortunatelv. How edges are aifficult to
wanze nreciseiv. Tlie above aigorithm can pe nsea to filter out
..i stalic eages that are not associated with a cuange in optical
‘5w over the neighborhood of the eage. [lie etfect is to use mo-
,on to reduce ambiguity. while using the static cues to preserve
canzauon. In our current algorithm. we are oniv interested in
sundarv points at which we can aiiferentiate between occiuding
ad occiuded surtaces. As a resuit. we delete aii edge eiements
‘nat do not have some differential optical flow along an axis per-
wonaicular to the edge. Tlis 15 easiiv done vy moaifving the
nove aigorithm as iollows:

. If the magnitude of V4G il Fy) is ciose to zero. delete the
adge eiement at rn from further consideration.

“iziva bit more complexity is requited in order to recognize edges
virh differential motion ~iiv tangential to the edge orientation,
<icn edges signal surlace voundaties. but it is not possivle to
..stinguish between the occiuding ana occiuded sides.

1 Occlusion-Sensitive Matching.

“»onpave gaveloped a sinpie moael of how occiusion miormation
SZUT e 1Ted 1O ald il reCognition. [ .e modael uses occiusion
s anang (rom thne bounaary liow constraint 1o reauce amoi-
-V template matcing appued to parually occiuded objects.
1 presenting this model. our aim is to demonstrate the utiiityv ot
A OrNorating ocCiISIon ilormation directiv into the recogniuon
rocess. [lLe specirics ol the aigorithm are for nurposes ol iilus-
‘ation oniv. The anproacn wiil work for veritication as wen as
‘anqard tempiate matchung. Anv occlusion cie can be usea: rue
[eTHOU i3 tot umited to using just mouon iulormauon, | lore
fcient aua reuable impteinentations are possioie.  [le basic
Lncinles b our Approacih can e summarized as 1oilows:

s pirtermine a matching “score” inised on searcning 1or moae
Cqtures n the unaae.

o [ntroduce penaiities for moael features not 1 the tmaae. vl
sy 1f there s NOU €ludence 1or the [Falures heind nudeden
4 an occiusion.

o (s O 1UTOAUCE PENQLLIEs for 1MAage fratures nol 4ecounted
_orn (he model.

.1 lite exampies presented bejow. we define thie malching score 1o
© 11e percentage ol model features found n the tmage. [his s
:one by computing the ratio ol matclied nodei features to poten-
ally matcnable model {eatures. [ he features usea in our sinpie
xampie are siihouette eage eiements. Onlv image edges witn
iferential motion across the edge are used. .\ smadi distance
‘oleration 1s ailowed for to accommodate noise ana other distor-
ions. [nformation about occiuding eages in the imaee 1s usea
n two wavs. Lirst of all. the model/non-moduel sides ot the tem-
‘tate ede must be compatible with the occiudingsoccinded siaes
't the image edges. ( Note that this is a stronger reauirement tnan
ast orientational compatibilitv.) Secondlv. a modei edee element
- consiiered potentiallv matchable if it is not masked. \When a
nodel is veing matched at a particular imaege location. wasking
weurs (1 there are significant occlusion eages (n the image wirthin
“he interior of the model. Masking regions are “grown’ outwara
som the occluding side of any interior image edges. [0 assure
“uat (¢ wil not extend bevona anv occtuding surtace. the masa-
+g reaion ends at the lirst image edgze reactied. [n our current
iniementation. matching is first done without using tie mass-
ng operation. Areas ol partiai match are tien reevaiuated using
1e masking procedure.

\ set of simpie examples was created to test our approach of oc-
~lusion sensitive matching. \We useq artificiallv created obiects
"0 better control for ambiguity in martciiing. However. the exam-
~ies ail involve reai imagery ana automaticailv determined opticat
dow. Figure | shows a set of fourteen ovject moaeis. Two actual
niects were used. one T shapea. the other L shavea. Figure 2
-liows one (rame from a seqnence 1 which the T is moving behind
v wall to tne night. [he waii is partiailv occiuding tne T. As a
seswt, simpie tempiate matching mav not be etfective for recogni-
“ion. Figure 3 shows contrast edges in the T seauence. [he eages
vere getermined using a iarge kernet zero-crossing operaror. Fig-

tn | chaws motion/contrast edees derermined by deieting eage
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Figure 1: Model set.

Figure 4: T motion/contrast edges.
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Figure 5: Best fit location for model.

Figure 6: Unmatched edges.

Figure 7: Masked portions of T model.

elements in figure 3 that are not associated with differential op-
tical flow across the edge. Figure 5 shows the position of the
T mode] in the image resulting in the highest matching score.
Figure 6 shows the unmatched edges within the T model when
applied to the image at the location shown in figure 5. The hash
marks along the edges point to the occluding surface. as indi-
cated by the boundary flow constraint. Finally, figure 7 shows
the portions of the T model which have beenr masked as a result
of the internal edges shown in figure 6.

Table 1 shows the matching scores for all model types evaluated
against the T and L sequences. The highest scores in each column
have been italicized. The models are matched against the raw
contrast edges, the motion/contrast edges, the motion/contrast
edges using the model/non-model orientational compatibility con-
straint. and finally using all of the matching constraints described
above (differential motion. modei/non-model edge orientation.
and masking). The data. while currently limited to a few test
cases, suggests that using occlusion information can reduce am-
biguity in matching. Using all of the available matching con-
straints, both examples are correctly classified. Using either tra-
ditional template matching or using only a subset of the matching
constraints causes one or both of the images to be misclassified.
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5 Summary.

Edge detection is possible based on both contrast and motion
nformation. Contrast edges can arise irom a large number ol
-auses and thus are difficult to accurately interpret. \otion
~dges are alwavs associated with depth and/or surface bound-
aries. but are difficuit to localize preciselv. The motion-based
segmentation technique described above combines motion and
~ontrast cues in an integrated edge detection process. Localiza-
-1on 1s based on contrast edges. while motion information is used
*o filter out edges not likelyv to correspond to surface bounaaries.
[lie method further gives a direct indication of the side of the
boundary corresponding to the occiuded surface.

[dentification of occluded and occluding surface can significantlv
1id in recognition tasks. ‘e have presented a simpie matching al-
gorithm in which the presence of occlusion boundaries is used to
avoid penalizing matches for situations in which model features
are hidden from view by other objects. While our alg rithm
has been described within the context of template matcning, it
.5 equally appropriate when verifving hypothesized matches sug-
gested by more compiex three-dimensionai reasoning processes.
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T image sequence L image sequence 5
Model contrast motion/ inodel/  occlusion | contrast  motion/ model/ scciusion
edges contrast non-model masiung edges contrast non-model masking
Moy 635 122 345 439 347 394 330 237
M7 (Cross) 659 362 511 542 754 317 148 154
M3 (Square) 642 248 218 296 512 260 192 192
M (Asymmetnic triangle) 628 520 456 603 116 321 257 277
Ms (Quadrilateral) 652 380 295 526 761 37 138 138
Ms (Rectangie) .800 348 388 638 704 304 156 156
M (T) 570 332 494 667 3543 327 T 236
M, {Narrow triangle) 665 343 320 320 B 198 12 a2
My (Inverted tnangie) 769 174 446 475 13 178 130 130 |
Mo (Narrow diamond) 621 571 566 606 97 648 371 5T
Mit (Standard diamond) 583 156 106 437 an 594 536 739
Mya (Broad tnangle) 563 340 398 328 716 128 372 380
M.y (Tilted trapezad) 638 150 37s 551 T43 628 3590 390
M4 (Tilted recrangie) 574 126 113 139 702 603 354 561

Table 1: Matching scores - all modeis applied to T and L sequences.
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Abstract

Active visual tracking of points on occlusion boundaries can simplify certain compu-
tations involved in determining scene structure and dynamics based on visual motion.
Two such techniques are described here. The first provides a measure of ordinal depth
by distinguishing between occluding and occluded surfaces at a surface boundary. The
second can be used to determine the direction of observer motion through a scene.

1 Introduction.

The study of computational models of active vision has received a flurry of recent activity (e.g.,
(1,2,3]). These and similar papers have investigated ways in which the visual process can be
simplified and/or extended if active control is available over camera motion. Much of this work
has dealt specifically with the issue of eye/camera rotation [2,3]. The ability to visually track
environmental points can lead to significant simplifications in computing visual properties. This
note describes two such simplifications, both involving the tracking of edge points corresponding
to occlusion boundaries. The first technique determines local depth orderings by recognizing which
side of a boundary corresponds to an occluding surface. The second technique is able to estimate the
direction of observer motion in a simpler manner than most other, previously proposed approaches.

The methods described below are most effective when the following three assumptions hold: An
observer is moving though an environment in which at most a relatively small portion of the visual

This work was supported by AFOSR contract AFOSR-87-0168 and NSF Grants DCR-8500899 and IRI-8722576.




field corresponds to moving objects. Occlusion boundaries involving significant changes in depth
commonly occur. The observer is able to keep a selected edge element centered in the field of
view. This last assumption is at least plausible in most natural situations where boundaries are not
straight and/or surfaces are visually textured. Analysis will be based on optical flow in the image
near the tracked edge element. Note that in biological terms, this corresponds to retinal flow. not
the Gibsonian idea of flow in the “optic array”.

2 Analysis.

Figure 1: Optical flow near a surface boundary.

Visual motion depends on the instantaneous translational velocity of the eye/camera, the range to
surface points in the scene, and the rotational velocity needed to track a particular scene point.
Figure 1 illustrates the situation in the neighborhood of a boundary when no rotation is occurring.
S, corresponds to a near surface, which has associated optical flow f,. S, is occluding a more
distant surface S;, with associated flow f;. The boundary itself moves in the image with flow
fs. From [4], we know that close to an occlusion boundary the visual motion of the occluding
surface and the visual motion of the boundary are the same. Thus, f, = fa.. Figure 2 describes

Figure 2: Optical flow with edge tracking.




the situation when the edge is being accurately tracked. Tracking is effected by introducing an
eye/camera rotation of velocity w = (A, B,0)T which exactly compensates for f,. This also has the
effect of nulling out f,. The only visible flow left, fj = f;— fs, is associated with the more distant
surface,

A simple set of equations defines the relationship between optical flow, motion, and scene structure

[3). Using a planar imaging system, perspective projection, and a coordinate system centered at
the camera with z axis along the line of sight:

u=1u+u , V=04 0, (1)

where u and v are the z and y components of flow, z is the distance to the surface point imaged at
(z.y), translational velocity is T = (U, V,W)T, and

U+ W -V 4+ yW
wp= T = VT (2)
z z
u, = Azy - B(z* +1) vr = A(y* + 1) - Bzy (3)

The optical flow equations simplify considerably at the center of the field of view:
U -V

lim 4, = — lim v, = — 4
z,y=0 ¢ 4 ! z,y—0 ¢ z ( )
lim v, =~B , lim v, = A (5)
T,y=0 z,y—0

If the tracked boundary element is centered within the field of view and if surface flow is measured
near this center, then f;, f,, and f; are all determined by equations 4-5.

Utilizing the fact that z, < z4, we can now compute f;:

fo = fa-fv=fi—fa (6)
= (%-B—%+B, %+A-%—A) (7)
(-2 -2 e
= (al,aV), a>0 (9)

f5 is thus a scaled version of the projection of the translation vector onto the image plane.
We can now summarize the two algorithms for analyzing visual motion using edge tracking:

o Identification of occluding surface.

When a boundary element is visually tracked, the region to the side of the boundary corre-
sponding to the occluding surface will have near-zero image flow. The region to the side of the
boundary corresponding to the occluded surface will in general be associated with significant
visual motion.




e Determination of direction of observer motion.

When a boundary element is visually tracked. optical flow due to the more distant surface
indicates the direction of observer motion. The flow vectors point in the direction of the
image location corresponding to the line of sight coincident with the direction of translational
motion. (This location is commonly called the “focus of expansion”, but the term is only
strictly correct for purely translational motion.) Multiple fixations over the field of view can
be used to solve for the actual direction of translation.

3 Discussion.

Both algorithms offer significant computational simplifications over alternate approaches. The few
previously reported optical flow based techniques for differentiating between occluding and occluded
surfaces require reasonably accurate flow estimates on either side of the boundary [4,6). The method
reported here only requires that regions of significant image motion be recognized. It is far easier to
determine that image motion is occurring than it is to estimate the specific characteristics of that
motion. When eye/camera rotations are possible, the determination of observer motion is difficult
because of the complex manner in which translational and rotational motion interact to generate
an optical flow field (see {5]). Edge tracking eliminates the complexity associated with rotation.

It is important to note that eye tracking does not reduce the conceptual difficulties associated
with these two tasks. Eye tracking provides neither additional constraints nor other sorts of new
information. This is easily seen by recognizing that all of the information in the tracking image is
available in an image of the same scene without tracking. Tracking is accomplished by generating
a rotation of the eye/camera system based on estimates of image drift such as optical flow at
the image center. Once this rotational velocity is determined, a non-tracking image sequence can
trivially be converted into the equivalent tracking sequence using equation 3. In fact, both of the
algorithms described above are really special cases of methods already presented in the literature.
Occlusion analysis is described in [4]. The method for determining direction of motion is essentially
equivalent to that described in [7]. What is different are the simplifications in actual algorithms,
not the underlying computational theory.

The effectiveness of these two algorithms is limited by the accuracy with which boundaries can be
tracked and by the visual texture present adjacent to the boundaries. While biological systems
are capable of tracking environmental points with relatively high precision, the computer vision
community has only recently begun to study the engineering difficuities involved in tracking features
in complex scenes. Aperture effects are a further consideration. It is generally feit that only the
component of motion perpendicular to an edge can be determined. This is actually only true if the
edge does not curve (e.g., see [8]). Reasonably reliable two-dimensional tracking should be possible
for most realistic scenes, though sufficient experimentation has not yet been done. Both algorithms
depend on recognizing aspects of image motion in the neighborhood of the tracked edge. This is
most easily accomplished if both surfaces are visually textured. This will hold in many but not all
scenes. We do know that human vision is capable of “filling in” the motion of homogeneous portions
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of surfaces. We do not as yet have good computational models of how this is done. however.

Open questions remain as to whether or not biological vision systems actually use methods of this
sort to simplify the determination of scene structure and motion trajectories. To answer these
questions. we need to know more about fixation patterns in realistic dynamic environments and
about how fixation and eye tracking affect the perception of relative depth.
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